首页> 外文OA文献 >Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations
【2h】

Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations

机译:平滑粒子流体动力学和移动网格中的亚音速湍流   模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Highly supersonic, compressible turbulence is thought to be of tantamountimportance for star formation processes in the interstellar medium. Likewise,cosmic structure formation is expected to give rise to subsonic turbulence inthe intergalactic medium, which may substantially modify the thermodynamicstructure of gas in virialized dark matter halos and affect small-scale mixingprocesses in the gas. Numerical simulations have played a key role incharacterizing the properties of astrophysical turbulence, but thus farsystematic code comparisons have been restricted to the supersonic regime,leaving it unclear whether subsonic turbulence is faithfully represented by thenumerical techniques commonly employed in astrophysics. Here we focus oncomparing the accuracy of smoothed particle hydrodynamics (SPH) and our newmoving-mesh technique AREPO in simulations of driven subsonic turbulence. Tomake contact with previous results, we also analyze simulations of transsonicand highly supersonic turbulence. We find that the widely employed standardformulation of SPH yields problematic results in the subsonic regime. Insteadof building up a Kolmogorov-like turbulent cascade, large-scale eddies arequickly damped close to the driving scale and decay into small-scale velocitynoise. Reduced viscosity settings improve the situation, but the shape of thedissipation range differs compared with expectations for a Kolmogorov cascade.In contrast, our moving-mesh technique does yield power-law scaling laws forthe power spectra of velocity, vorticity and density, consistent withexpectations for fully developed isotropic turbulence. We show that largeerrors in SPH's gradient estimate and the associated subsonic velocity noiseare ultimately responsible for producing inaccurate results in the subsonicregime. In contrast, SPH's performance is much better for supersonicturbulence. [Abridged]
机译:高音速,可压缩湍流被认为对星际介质中恒星形成过程无异。同样,宇宙结构的形成有望在星际介质中引起亚音速湍流,这可能会大大改变虚拟化暗物质光环中气体的热力学结构,并影响气体中的小规模混合过程。数值模拟在表征天体湍流特性方面发挥了关键作用,但远系统的代码比较仅限于超音速状态,因此尚不清楚亚音速湍流是否忠实地由天体物理学常用的数值技术表示。在这里,我们专注于在驱动亚音速湍流的模拟中比较平滑粒子流体动力学(SPH)和我们的新动网技术AREPO的精度。为了与先前的结果取得联系,我们还分析了跨音速和高超音速湍流的模拟。我们发现,广泛使用的SPH标准配方在亚音速状态下产生有问题的结果。与其建立类似于Kolmogorov的湍流叶栅,不如在驱动尺度附近迅速衰减大型涡流,然后衰减为小规模的速度噪声。降低粘度设置可以改善这种情况,但耗散范围的形状与Kolmogorov级联的期望值相比有所不同。相比之下,我们的移动网格技术的确产生了速度,涡度和密度的功率谱的幂律定标定律,与充分发展的各向同性湍流。我们表明,SPH梯度估计中的大误差以及相关的亚音速速度噪声最终是造成亚音速状态下不准确结果的原因。相反,对于超音速湍流,SPH的性能要好得多。 [简略]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号